MARK SCHEME for the May/June 2007 question paper

5054 PHYSICS

5054/04
Paper 4 (Alternative to Practical), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - May/June 2007	5054	04

1 (a) (i) 10 to 20 oscillations
(ii) T too small / time measured larger / gives time on stopwatch about 10s / not too long to take readings / large number may lose count / error in T is $1 / \mathrm{N}$ error in $\mathrm{t} / \mathrm{good}$ comment on reaction time

> NOT just makes T more accurate
(b) check for error in timing/ practice increases competence / average gives more accurate time / increases sf in T
(c) paper clip moving fastest / time when passing fiducial marker

NOT makes T more accurate
(d) oscillations too fast to count/ time too small to measure
(e) axes, correct way round, labelled quantity and unit scales; more than $1 / 2$ page, sensible 5 points plotted accurately $\pm 1 / 2$ small square best fit curve drawn, neatly

2 (a) (i) normal drawn perpendicular to mirror where ray arrives
(ii) 59° to 60° unit required
(b) (i) reflected ray drawn accurately from mirror and through P_{3} and P_{4}
(ii) reflected ray drawn accurately from mirror and through P_{5} and P_{6}
(iii) 40 ± 1
(iv) 2 ecf \quad (b) (iii) / 20 no unit
(v) repeat experiment for different value of z additional detail, e.g. compares new c to original c at least two additional values of z plots graph of y against z

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - May/June 2007	5054	04

3 (a) quantities: temperature and time NOT temperature change
units: ${ }^{\circ} \mathrm{C}$ and seconds (s) or minutes (min not m)
(b) (i) y-axis labelled temperature or temperature change, x-axis labelled time (allow symbols for quantities)
(ii) correct curve shape for y -axis label
(iii) for $\mathrm{y}=$ temperature, values 90° and 20° marked on temperature axis,
and line starts at 90°, ends at 20°
OR for $y=$ temperature change, value 70° marked on temperature change axis, and line from 0 to 70°
unit required on axes labels or on values on axes ignore curve shape
(c) temperature continuously changing / only one temperature at each time
(d) any two clear practical details e.g. at least $1 / 3$ thermometer immersed
avoid parallax when reading thermometer (any explanation must be correct)
use of two people
heat above 90° and start stopwatch as temp reaches 90°
read from top of mercury meniscus
mercury column in line with scale
stir water
large number of readings taken
stopwatch close to thermometer
external factors constant

4 (a) (i) newton meter / spring balance / force meter
(ii) 4.6 to $4.9 \quad 1 \mathrm{dp}$ only
(iii) 1.5 or 1.6
(b) 6.9 cm ecf (a) (ii) and (iii) NOT one sf
(c) water on the block will change the weight / time needed to dry cube

